Carbon & Nitrogen Dynamics Under Perennial Forage and Pasture Cropping Systems

Dr. Dan Undersander University of Wisconsin

Carbon & Nitrogen Dynamics

By virtue of their growth habitat, perennial species invest much more of their photosynthate below ground so that a greater fraction of the plant biomass is returned to the soil, sustaining greater amounts of OM (and C) in the soil.

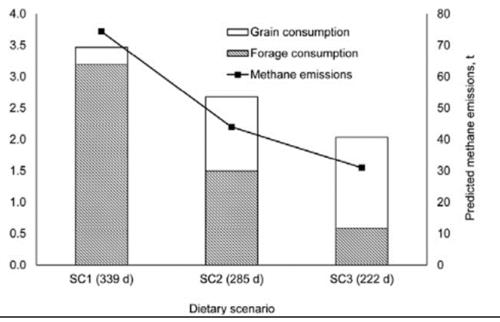
(Bolinder et al., 2007; Glover et al., 2010a,b),

Carbon & Nitrogen Dynamics

- 1. Pasture systems
- 2. Perennial forage in cropping systems
- 3. Manure application

Pasture systems

- Soil carbon sequestering can be improved with management:
 - Forage productivity and soil carbon levels generally increase with fertilizer or lime applications(Conant et al. 2001).
 - Irrigation and use of improved grass species increase both yield and carbon sequestering
 - Introduction of legumes reduces nitrogen fertilizer need
 - Well-managed grazing lands generally maintain or even increase soil carbon accumulation compared with native ecosystems
 - Livestock benefit from well-managed lands because the forage usually has higher nutrient concentrations (Silveira et al. 2009), though animals may offset some of the gains.

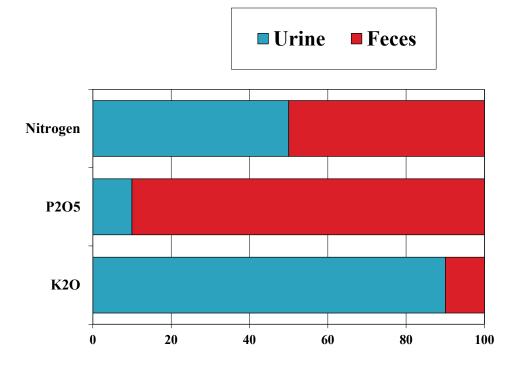

Reducing animal emissions

- Animals produce 17% of global CH₄ emissions
- Dietary supplementation with lipids or feed additives may reduce
- The most effective means of reducing CH₄ production from forage-fed ruminants is through improved animal nutrition leading to improved animal performance and less CH₄ emissions per quantity of meat and milk produced.

Reducing animal emissions

The most effective means of reducing CH₄ production from forage-fed ruminants is through improved animal nutrition leading to improved animal performance and less CH₄ emissions per quantity of meat and milk produced.

Source: J. Guyader, H. H. Janzen, R. Kroebel, and K. A. Beauchemin. 2016 American Society of Animal Science



Reducing animal emissions

- Physical processing of forages, such as chopping, grinding and steam treatment (disruption of plant cell wall structure), also improves forage digestibility and mitigates enteric CH₄ production in ruminants.
- Legumes tend to decrease CH4 formation compared with grasses because of their faster passage rate through the rumen
- use of highly digestible forages containing bioactive compounds (such as tannins, saponins, and essential oils) may provide a means of decreasing methane from grazing ruminants

Distribution of Nutrients in Feces and Urine of Cattle

- •About half nitrogen in urine
- •Urine nitrogen mostly inorganic
- Most phosphorus in feces
- •Most potassium in urine

Percent of Component

Nitrous oxide losses from pasture

- Nitrous oxide (N₂O) lost from low vegetative cover or adequate vegetative cover during rainy season
 - N₂O emissions were higher for low vegetative cover compared to adequate vegetative cover (3.31 versus 1.91 kg N₂O-N/ha) pastures. (Chirinda *et al.* Scientific Report Jan 2019)
- Fungal inhibition decreased N₂O fluxes by about 40% for both amino acid treatments (phenylalanine or glycine)
- As the pH decreases to <7.0, the equilibrium between NH₄⁺ and NH₃ shifts in favor of NH₄⁺, which may undergo clay mineral fixation, plant uptake, immobilization or nitrification (Rex *et al. Sci Rep* 9, 13371 2019). U

Value of legumes

- 12.5 million tons of carbon dioxide (CO₂) are emitted annually by the current process for producing urea ((H₂N)₂CO),
- Urea production + use requires 5.15 kg CO₂-eq/kg product
- Having a legume in a perennial pasture reduces the need for nitrogen fertilizer
- Having a perennial legume in a crop rotation reduces need for nitrogen fertilizer of next crop.

Legumes reduce nitrogen need of pastures

<u>Grass hay</u>	diesel g/a	frequency	
Conventional plow/disk ^{1,2}	2.95	0.14	0.42
Reduced tillage ^{1,2}	0.95	0.14	0.14
notill	0.45	0.14	0.06
Total planted Equivalent, gal			
Planting	g 0.55	1	0.55
Post-emergence fertilizer	. 0.89	1.00	0.89
nitrogen fertilizer	[.] 1.63	4.00	6.53
irrigation/ac-in	2.00	0.00	0.00
Harvest	1.2	1	1.20
Trucking	g 0.4	1	0.40
Total Diesel Equivalent harvestee	l, gal		
Diesel GHG (gal/bu)			10.19

Without legume

 10.19 gal diesel equivalent for nitrogen fertilizer

With legume

 3.66 gal diesel equivalent for nitrogen fertilizer

= 67% savings

Corn silage and grain yields following alfalfa as affected by N fertilizer rate

Corn N Rate	Corn Silage Yield	Corn Grain Yield
Lb N/a	T DM/ac	Bu/ac, 15.5%
0	9.77	228
20	9.75	226
40	9.81	228
80	9.78	229
160	9.88	229
LSD (0.10)	NS	NS

Data are averages over 5 MN locations in 2009 and 5 potash rates applied to final-year alfalfa.

Authors: Jeff Coulter, Extension Corn Agronomist, Michael Russelle, USDA-ARS Soil Scientist; Craig Sheaffer, Professor of Forage Mgt.; and Dan Kaiser, Extension Nutrient Management Specialist.

- For Red Clover interseeded into a small grain (oats, wheat, etc.) the year before corn, the nitrogen fertilizer replacement was
 - 78 kg N/ha in studies conducted in Ontario,
 - 150-155 kg N/ha in Pennsylvania,
 - 94-110 kg N/ha in Wisconsin,
 - 100-133 kg N/ha in Michigan and New York.
- The nitrogen release from spring-killed clover tends to coincide with the time of greatest N need of corn.

Using Legumes to Reduce GHG in Cropping Systems

offset synthetic nitrogen needs,

<u>Grain Corn</u>	diesel g/a			
Conventional plow/disk ^{1,2}	2.25			
Chisel plow/disk ^{1,2}	0.65			
Total planted Equivalent, gal				
Pre-emergence fertilizer ³	13.53			
Pre-emergence N fertilizer	5.87			
Planting	0.55			
Post-emergence fertilizer	14.68			
Protection	0.31			
Cultivation ^{1,2}	0.4			
irrigation/ac-in⁵	2.00			
Harvest	1.2			
Trucking	0.4			
drying ⁴	0.666			
Total 42.5 g				

With nitrogen fertilizer, total = $397 \ell/ha$

With legume credits, total = $205 \ell/ha$

= 49% savings

Legumes Replacing Nitrogen Fertilizer

Corn fertilizing with urea

- 194 kg/ha N = 194/.46 *\$514.81/1000 = \$217.12/ha (175 lbs/a N = 175/.46 *\$514.81/2000 = \$97.93/a)
- Wheat fertilizing with urea
 - 133 kg/ha N = 133/.46 *\$514.81 = \$148.85/ha
 (120 lbs/a N = 120/.46 *\$514.81 = 67.15/a)

- Offset synthetic nitrogen needs,
- Soil carbon accumulation under perennial systems
 - Greatest carbon accumulation occurs in 1st and 2nd year of stand

- Offset synthetic nitrogen needs,
- Soil carbon accumulation under perennial systems (pasture),
- Increased organic matter in alfalfa-corn rotations
 - Crop residues contain more carbon than nitrogen,
 - Nitrogen supplied by legumes increases decomposition of crop residues to soil organic matter.

- Offset synthetic nitrogen needs,
- Soil carbon accumulation under perennial systems (pasture),
- Organic matter addition in alfalfa-corn rotations
 Improved soil health, resilience, water holding capacity, drought tolerance,

Soil Health - Porosity

- Several legumes have taproots reaching 2 to 3 m deep and 1 cm in diameter that open pathways deep into the soil.
- Nitrogen-rich legume residues encourage earthworms and the burrows they create.
- Root channels and earthworm burrows promote air movement and water percolation deep into the soil.
- Thus, fields drain faster after rains.

Soil Health - Physical Conditions

- Legumes create more stable soil aggregates
 - The protein, glomalin, along the roots of legumes serves as a "glue" that binds soil together into stable aggregates.
 - Aggregate stability increases pore space and tilth, reducing both soil erodibility and crusting

- offset synthetic nitrogen needs,
- soil carbon accumulation under perennial systems (pasture),
- organic matter addition in alfalfa-corn rotations
- the associated soil health, resilience, water holding capacity, drought tolerance,
- providing permanent cover for highly erodible or sensitive areas,

Manure application

- Soil conditions, such as moisture content, cation exchange capacity (CEC), pH, and plant or residue cover can impact ammonia losses.
- Largest losses of ammonia from surface applied manure

	cool	warm	
Day after application ¹	<50° F <u>+</u> 10	<u>></u> 50° F <u>+</u> 20	
immediately (within 1 hr)	5	5	
Incorporated within 1 day	12.5	37.5	
Incorporated within 2 days	16	44	
Incorporated within 3 days	18.5	51.5	
Incorporated within 4 days	21.5	58.5	
Incorporated within 5 days	25	65	
Not incorporated	45	87.5	
Injected	0	0	
Incorporation can be accomplishe	ed by tillage or 0	.3 inch or gre	eater rainfa
Sprinkler applied ²			
> 0.4" water applied or flood applied	20		
< 0.4" water applied	60		

Source: Ontario Ministry of Agriculture, Food and Rural Affairs

Manure application to forages

- Ammonia-N losses are typically 30 to 55 kg/ha from pre-plant surface application,
 - loss occurring in the first 6 to 12 hours after application.
- Manure placed in a band below the crop canopy, has less surface exposure and some wind protection.
 - Most studies in Europe have reported volatilization reductions of 30 to 70% compared to surface application
- Emission rates are reduced 60-80% by quick incorporation and over 90% by injection.
 - Shallow injection systems (5-cm depth) have been developed which reduce ammonia emissions but produce less soil disturbance and forage crop damage (Pain & Misselbrook, 1997).

Legume Benefits

- 1. High quality forage
- 2. Nitrogen fixation
 - Reduced fertilizer need
 - Nitrogen credits for next crop
- 3. Enhanced yield of next crop in rotation

Value of Short Rotations

Legume credits from alfalfa stand

- Nitrogen fertilizer prices as of Aug 2023
- Average urea price \$1.39/kg N,
- Average anhydrous ammonia price \$0.93/kg N,
- Urea Ammonium Nitrate (UAN28) \$1.5/kg N
- Alfalfa value to replace nitrogen fertilizer
 - Corn/sorghum 195 kg/ha -- Cost \$163 to \$262 per ha
 - Wheat -- 100 kg/ha -- Cost \$93 to \$150 per ha
- > 20% yield increase due to rotational benefit

Economic benefit if keep legume stand for only 2 years!

Farming Sustainably Using Legumes Impacts of Maintaining Perennial Forages in Rotation

Consider that:

- Legumes in rotations provide
 - High quality forage
 - Nitrogen fertilizer for following crop
 - Yield increase of following crop
- Value of 2-year stand
 - Get maximal legume benefits
 - Value of coated seed fungicide
 - First year with cover crop

Greater farm independence from input purchases!